MATH 3060 Tutorial 8

Chan Ki Fung

November 17, 2021

1 Questions of this tutorial

- 1. Let $f: X \to Y$ be a continuous map between metric spaces. Suppose f has the property that $f^{-1}(K)$ is compact for any compact $K \subset Y$, show that f(F) is closed for any closed $F \subset X$.
- 2. Let $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ be open subsets. Let $f: U \to V$ be a continuous map. Suppose f has the property that $f^{-1}(p)$ is compact for any $p \in V$, and the image f(F) is closed for any closed $F \subset U$. Show that $f^{-1}(K)$ is compact for any compact $F \subset V$.
- 3. Let G be a closed and bounded subset of \mathbb{R}^n , and $(f_n) \in C(G)$ is a sequence of function. Suppose $f_n \to f$ pointwise, show that $f_n \to f$ uniformly.
- 4. Show that the boundedness assumption of the Ascoli's theorem can be weakened to pointwise boundedness.
- 5. (a) Let $g: [0,1] \to \mathbb{R}$ be a (monotonically) increasing function, show that the set of discontinuity of g is countable.
 - (b) Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of increasing functions, show that there is a (pointwise) converging subsequence.